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Abstract—Collecting real-world manipulation trajectory data
involving robotic arms is essential for developing general-purpose
action policies in robotic manipulation, yet such data remains
scarce. Existing methods face limitations such as high costs, labor
intensity, hardware dependencies, and complex setup require-
ments involving SLAM algorithms. In this work, we introduce
Fast-UMI, an interface-mediated manipulation system comprising
two key components: a handheld device operated by humans
for data collection and a robot-mounted device used during
policy inference. Our approach employs a decoupled design
compatible with a wide range of grippers while maintaining
consistent observation perspectives, allowing models trained on
handheld-collected data to be directly applied to real robots.
By directly obtaining the end-effector pose using existing com-
mercial hardware products, we eliminate the need for complex
SLAM deployment and calibration, streamlining data processing.
Fast-UMI provides supporting software tools for efficient robot
learning data collection and conversion, facilitating rapid, plug-
and-play functionality. This system offers an efficient and user-
friendly tool for robotic learning data acquisition.

I. INTRODUCTION

Collecting data of robotic arms interacting with objects in
real-world environments is essential for advancing general-
purpose action policies in robotic manipulation [1, 6, 15].
However, the scarcity of such interaction data has significantly
hindered progress in this field. Existing data collection systems
can be categorized into three types: direct human teleopera-
tion [16], immersive technology-based teleoperation [7, 12],
vision-based data collection [2, 9], and interface-mediated
manipulation [3, 11, 13].

Direct human teleoperation involves operators controlling
robots remotely or on-site to acquire comprehensive data,
including visual inputs, motor states, and action commands.
Although this method provides high-quality data, it is costly
and labor-intensive. Even with devices like the SpaceMouse1,
a six-degree-of-freedom controller, collecting data for fine-
grained operations remains challenging due to difficulties
in precisely aligning with small target objects. Vision-based

1https://3dconnexion.com/us/spacemouse/

data collection uses cameras, such as wearable devices, to
capture interaction data without direct robot control. While
this approach gathers certain visual information, it lacks
the ability to represent the complex interactions between
robotic arms and their environments [8]. Interface-mediated
manipulation systems, exemplified by Universal Manipulation
Interface (UMI) [6], employ handheld grippers and special-
ized interfaces to collect data from human demonstrations,
specifically capturing the end-effector poses of robotic arms.
Algorithms like Diffusion Policy [5] then infer robotic actions
from the collected data, reducing costs and simplifying the
data collection process.

The UMI system addresses challenges in human demonstra-
tion data collection and supports action policy learning across
various scenarios, but it still has two limitations: strong cou-
pling with specific robotic hardware and complexities arising
from the use of open-source SLAM2 in the system. First, the
system’s strict hardware requirements—such as the necessity
of using the Weiss WSG-50 gripper3—impose limitations.
Users must procure these specific components to directly
implement UMI, increasing costs and limiting adoption among
those with different robotic configurations. Adapting UMI
to other hardware requires redesigning grippers, recalibrating
cameras, performing SLAM calibration, and modifying code
parameters, which are labor-intensive tasks hindering plug-
and-play functionality. Furthermore, these modifications often
lack generalizability, complicating application across different
laboratories and equipment. Second, while leveraging SLAM
technology enables the estimation of the end-effector’s pose,
using open-source solutions like ORB-SLAM3 introduces
additional challenges. SLAM performance highly depends on
parameter settings of the handheld device, and deployment
and debugging are complex and time-consuming. Users must
invest considerable effort in data visualization and alignment
during configuration. The system also requires global coordi-

2ORB-SLAM3 [4] is used here.
3https://weiss-robotics.com/servo-electric/wsg-series/
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Fig. 1. Physical prototypes of our Fast-UMI system. Left: The handheld device integrates a GoPro camera for visual monitoring, a RealSense T265 for
capturing the end-effector’s six-degree-of-freedom pose, and a yellow gripper equipped with fingertip markers to measure gripper aperture. Right: The robot-
mounted device replicates the handheld configuration to ensure consistent observation perspectives between human demonstrations and robotic executions.
We employ a color-coding scheme to differentiate the hardware architectures of our proposed Fast-UMI and the original UMI system. Green indicates new
components not present in UMI; Blue represents components redesigned based on UMI’s counterparts; Red denotes components shared between Fast-UMI
and UMI. Fig. 2 shows the various components of the Fast-UMI device.

nate calibration involving multiple conversion steps, reducing
user-friendliness. Additionally, the collected data’s usability
for training depends on the SLAM algorithm’s performance;
failures to obtain accurate end-effector coordinates may neces-
sitate discarding data, thereby reducing collection efficiency.

To enable laboratory and industrial users to easily employ
efficient devices for data collection easily, we have undertaken
a redesign with several objectives:

• Decoupling from robotic hardware to enhance adaptabil-
ity: Removing strict hardware dependencies allows the
new design to integrate with a wide range of robotic arms
and grippers, facilitating broader adoption across different
platforms.

• Facilitating rapid user deployment through plug-and-play
functionality: The reengineered system is developed for
quick installation and minimal configuration, enabling
users to deploy the interface swiftly without extensive
setup procedures.

• Providing supporting software tools for efficient data
collection and conversion: We offer software solutions
that streamline data acquisition and processing, ensuring
seamless integration with existing imitation learning al-
gorithms, such as ACT [14] and and Diffusion Policy.

• Laying the groundwork for enhanced scalability to sup-
port multimodal datasets: The redesigned interface is
prepared to accommodate various data types and sensors,
such as tactile sensors, allowing for the potential col-
lection of multimodal datasets to support more complex
robotic learning tasks in future iterations.

To achieve these objectives, we adopt a decoupled de-
sign philosophy. We attach finger extensions identical to
those on the handheld device to the robot’s gripper, aligning
the robotic system with the UMI handheld apparatus. By
equipping existing robot grippers with these attachments, we
ensure consistent observation perspectives, allowing models

trained on handheld-collected data to be directly applied to
real robots. While retaining the GoPro camera as in the
UMI system, our mechanical design ensures precise alignment
the camera’s viewpoint with the fingertips across different
hardware configurations. We also refine the handheld device’s
mechanical structure to improve operational stability. Unlike
UMI, which relies on a SLAM algorithm, we directly use the
RealSense T265 camera4 to obtain the robot’s end-effector
pose, eliminating the need for complex SLAM deployment and
calibration, thereby simplifying data processing. Our method
requires no repetitive extrinsic calibration, simplifying both
software and hardware integration. To ensure that Fast-UMI
almost meets UMI system performance while reducing costs
and simplifying deployment, we rigorously test its observation
consistency and data collection process. Consequently, we
develop an integrated solution that combines the handheld
device with robot-mounted equipment, providing an efficient
and user-friendly tool for robotic learning data collection.

II. PROTOTYPE DESIGN

In this section, we detail the design of our Fast-UMI
system, focusing on two key components: the handheld device
operated by humans for data collection and the robot-mounted
device used during policy inference. Our design aims to ensure
visual alignment between these devices while decoupling from
specific robotic hardware to enhance adaptability.

Design Challenges. Building upon the objectives outlined
in the Introduction, our prototype design addresses several
critical challenges. A significant challenge is decoupling the
system from specific robotic hardware to enhance adaptabil-
ity. Designing components that integrate seamlessly with a
wide variety of robotic arms and grippers—each differing
in size, shape, and mechanical interface—requires innovative

4https://dev.intelrealsense.com/docs/depth-and-tracking-cameras-alignment
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Fig. 2. Various components of the Fast-UMI prototype device. We employ a color-coding scheme to categorize hardware components based on procurement
method: blue represents components to be purchased, while yellow denotes components requiring 3D printing.

mechanical solutions. Achieving visual consistency between
the handheld and the robot-mounted devices present another
challenge. Variations in gripper dimensions necessitate ad-
justable mechanical designs to maintain consistent camera
perspectives, crucial for effective policy transfer in robotic
learning algorithms. Fast deployment to facilitate rapid user
setup is also a key concern. Creating a plug-and-play solution
demands careful system architecture consideration, minimiz-
ing the need for extensive calibration, mechanical adjustments,
or software configuration. Ensuring that users could install and
configure the system with minimal effort is essential for broad
adoption. Finally, preparing for future scalability to support
multimodal datasets introduced challenges in modularity and
flexibility. We need to design the system to accommodate
additional sensors and data types in future iterations without
significant redesign, requiring a forward-thinking approach to
both hardware and software components.

Decoupled Design Philosophy. To address these challenges,
we adopt a decoupled design philosophy. We attach identical
fingertip extensions from the handheld device to the robot’s
gripper (see Fig. 1). This design maintains consistency be-
tween the robotic system and the handheld apparatus, allowing
models trained on data collected via the handheld device
to be directly applied to real robots. We develop insertable
fingertip extensions compatible with five mainstream gripper
models, including XArm gripper 5 and robotiq 2f-856. This
methodology can be adapted for other gripper types as well.

Handheld Device Design. The handheld device (see the left
subfigure in Fig. 1) is used for manual data collection to train
action policies. It consists of:

• GoPro Camera with fisheye extension module: Captures
fisheye images for monitoring and data collection.

• RealSense T265 Camera: Obtains the six-degree-of-
freedom pose of the end effector.

5https://uk.robotshop.com/products/xarm-gripper
6https://robotiq.com/products/adaptive-grippers

• Handheld Gripper: Equipped with two markers at its
fingertips to record the gripper’s width.

We pay special attention to aligning the camera’s viewpoint
with the gripper’s fingertips to ensure visual consistency with
the robot-mounted device.

Robot-Mounted Device Design. The robot-mounted device
(see the right subfigure in Fig. 1) is engineered to accommo-
date various robotic arm configurations. It primarily includes:

• GoPro-Robot Mount (Brown Extension Plate): Serves as
the mounting point for the GoPro camera.

• Adjustable Extension Arm (Blue Extension Arm): Allows
for lateral and vertical adjustments to align the camera’s
viewpoint.

By adjusting the extension arm, we can achieve visual consis-
tency with the handheld device across different platforms. The
insertable fingertip extensions ensure that, despite variations
in gripper sizes and shapes, the visual perspective remains
consistent.

Visual Alignment and Consistency. To ensure visual consis-
tency between the handheld and robot-mounted devices, we
established a visual alignment guideline: the bottom of the
GoPro’s fisheye lens image aligns with the bottom of the grip-
per’s fingertips. This guideline enhances visual consistency
and ensures proper camera positioning on both devices. Even
with identical fingertip extensions, variations in gripper sizes
can affect visual alignment. Our adjustable mechanical design
is able to compensates for these displacements, allowing the
extension arm to be adjusted as needed to maintain consistent
observation perspectives. Figure 3 shows the views captured
by the GoPro cameras on the handheld device and the robot-
mounted device, respectively.

Camera Selection and Mounting. The choice of the GoPro
camera was deliberate. Its fisheye lens captures wide-angle
images that can potentially replace the combination of first-
person and third-person planar cameras traditionally used in
algorithms like ACT and DP. Our preliminary observations
suggest that fisheye images from a single camera can provide



(a) Observation of handheld mounted Gopro (b) Observation of robotic mounted Gopro

Fig. 3. The views captured by the GoPro cameras on the handheld device
and the robot-mounted device, respectively, with the red dashed line indicating
the ends of the fingertips.

sufficient spatio-temporal information, simplifying the hard-
ware setup by eliminating the need for multiple cameras. This
simplification is particularly beneficial for mobile robotic arms
in real-world applications, where installing multiple cameras
may be impractical as there may be occlusion when using
kinesthetic teaching methods. We mounted the RealSense
T265 camera using specially designed limiters to ensure it re-
mains perpendicular to the GoPro camera. This design choice
simplifies the installation process and guarantees precise align-
ment between the two cameras, facilitating accurate pose
estimation without the need for complex SLAM algorithms.

Design Optimizations and Improvements. Unlike the orig-
inal UMI system, we omits mirrors on the sides of the
gripper. Experiments with UMI indicates that mirrors provide
limited improvements on systems performance. Omitting them
preserves valuable space on top of the gripper for integrating
additional sensors, such as tactile sensors, thus enhancing the
potential for future system expansion. To improve the stability
and durability of the robot-mounted device, we have made
several optimizations:

• Reinforced the GoPro-Robot Mount: Enhanced the struc-
tural integrity to reduce vibrations.

• Used Carbon Fiber Materials: Increased strength while
reducing weight.

• Standardized Male-Female Interface Design: Allowed
sequential connection of extension arms to adjust length
without significant vibration (up to three extensions
tested).

These enhancements ensure reliable performance during data
collection and improve the user experience by simplifying
hardware adjustments.

System Adjustability and Adaptability. Our configuration
allows all users to share a standardized handheld device, while
the robot-mounted device can be adjusted to fit various robotic
arms and gripper models. This arrangement ensures consis-
tency in data collection through the uniform handheld device,
while the adjustable robot-mounted device enhances system
versatility. The extension arm’s length can be modified using
the standardized interface, and its modular design facilitates
easy adjustments. We believe that our design methodology
can be applied to other types of grippers beyond the five
mainstream models we have already adapted. This adaptability
furthers our goal of decoupling the system from specific
robotic hardware, making Fast-UMI accessible to a broader

range of users.

III. DATA COLLECTION

This section details the procedure for data collection using
our Fast-UMI prototype device. While comprehensive code
and implementation specifics are available in our project
website, we provide a concise description of the data collection
workflow to facilitate rapid adoption.

Device Preparation. Data collection primarily involves cap-
turing fisheye images from the GoPro and acquiring six-
degree-of-freedom pose data from the RealSense T265. Unlike
the original UMI system, which relies on complex SLAM-
based pose estimation, we leverage the T265’s built-in tracking
capabilities to directly obtain end-effector pose data, simplify-
ing the data processing pipeline. All data is transmitted via
wired connections to ensure stability and real-time perfor-
mance.

• GoPro Camera: A GoPro Hero 9 camera configured in
ultra-wide mode captures fisheye images at a resolution
of 1280×720 and 60 FPS, providing an extensive field of
view for comprehensive scene coverage. Real-time image
transmission is facilitated via an Elgato HD60 X capture
card. For higher resolutions, more advanced capture cards
may be employed; we plan to evaluate higher-resolution
configurations in future work.

• RealSense T265: This device captures six-degree-of-
freedom pose data of the handheld gripper, which we
convert to the Tool Center Point (TCP) pose to represent
the trajectory of human demonstrations. Compared to
UMI, our design eliminates the need for a complex post-
processing SLAM pipeline to reconstruct TCP trajecto-
ries, significantly simplifying data processing.

Data Synchronization and ROS Nodes. To coordinate data
collection from multiple sensors, we utilize Robot Operating
System (ROS) [10] as middleware. ROS provides a flexible
framework for developing robotic applications, enabling com-
munication between various nodes—independent processes
executing specific tasks—and ensuring precise synchronization
of data from multiple sources. n our data collection setup, we
employ the following ROS nodes:

• GoPro Node: Captures fisheye images from the GoPro
camera and publishes the image data stream for down-
stream processing. These images offer a wide field of
view, crucial for capturing comprehensive environmental
visual information.

• T265 Node: Interfaces with the RealSense T265 tracking
camera to obtain the pose and orientation of the end-
effector’s pose and orientation. Accurate tracking of the
end-effector is essential for imitation learning tasks, and
this node publishes pose data in real time for monitoring
and recording the movements.

• Gripper Width Calculation Node: Calculates the gripper
aperture using fiducial markers on the handheld device.

Precise synchronization of these data streams is critical to
ensure temporal alignment of sensor readings. Any inconsis-
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Fig. 4. Evaluation of the RealSense T265 trajectory accuracy compared to motion capture (MoCap) ground truth data. (a) Spatial trajectories along three
axes: T265 measurements (red lines) and MoCap ground truth (green lines). (b) Positional errors of the T265 sensor relative to MoCap along the three axes.

Approach cup Grasp cup Place in sink

Data collection

…

Policy inference
Fig. 5. The task involves robotic manipulation to grasp a cup and place it into a sink. The first three images depict a human operator utilizing the Fast-UMI
interface-mediated manipulation device to collect demonstration data. The subsequent two images show the robot executing an inferred action policy, trained
on the collected data using the ACT algorithm.

tencies could lead to errors in interpreting the robot’s actions
during imitation learning, adversely affecting learning perfor-
mance. To achieve temporal synchronization, we implement
a dedicated data collection node. This node aggregates real-
time data from the GoPro, T265, and gripper width calcu-
lations, recording them with unified timestamps. By storing
these synchronized data points, we construct a comprehensive
and accurate dataset representing the robot’s actions and the
surrounding environment, which is instrumental for training
robotic learning models to replicate human demonstrations
with high fidelity.

Data Collection Steps. The data collection procedure involves
the following steps:

• Step 1: Initialize Sensor Nodes: Launch the GoPro node,
T265 node, and gripper width calculation node to verify
that data from all sensors are being published correctly.

• Step 2: Execute Data Collection Using Handheld Device:
With all sensor nodes operational, a human operator
performs the desired tasks using the handheld device. The
data collection node records synchronized data from all
sensors in real time as the operator executes the actions.

• Step 3: Perform Data Conversion: Upon completing data
collection, run the data conversion node to transform
the raw dataset into a format compatible with specific
imitation learning models, such as ACT or Diffusion
Policy.

This streamlined process simplifies data collection, enabling
users to deploy our Fast-UMI system without complex con-

figurations. Detailed code and implementation specifics are
available in our project website.

IV. EVALUATION AND DEMONSTRATION

Quantitative Analysis of T265 Pose Estimation Accuracy.
As shown in Fig. 4, subfigure (a) illustrates the spatial tra-
jectory of the T265 sensor in red, while the MoCap system’s
trajectory, serving as the ground truth, is displayed in green.
Subfigure (b) presents the positional errors of the T265 sensor
compared to the MoCap data across the X, Y, and Z axes.
For the X-axis, the mean positional error is −0.0384 m with
a variance of 0.00056, indicating a slight negative bias in
the T265 measurements. On the Y-axis, the mean error is
−0.0116 m, with a higher variance of 0.00109, reflecting
smaller positional error but greater variability compared to
the X-axis. The Z-axis demonstrates a positive mean error of
0.0212 m and the smallest variance at 0.00051, suggesting a
minor upward bias with relatively low variability. Overall, the
T265 trajectory demonstrates an average positional error of
0.0237 m. These findings indicate that while the T265 sensor
provides reasonably accurate pose estimation suitable for many
robotic manipulation tasks, inherent biases and variances exist
that should be accounted for in precision-critical applications.

Demonstration. We validate the Fast-UMI system in real-
world environments by implementing an action policy in-
ferred through the ACT algorithm trained on the collected
dataset. Additional demonstrations illustrating the system’s
performance are available on our website.



V. CONCLUSION AND FUTURE WORK

We have presented Fast-UMI, an interface-mediated ma-
nipulation system designed to simplify and enhance data
collection for robotic manipulation tasks. By employing a
decoupled design compatible with various grippers and main-
taining consistent observation perspectives, Fast-UMI allows
models trained on handheld demonstration data to be directly
applied to various robots. This approach eliminates the need
for complex SLAM deployment and calibration, streamlining
the data processing pipeline. Fast-UMI provides user-friendly
software tools for efficient data collection and conversion,
facilitating rapid, plug-and-play functionality. By addressing
hardware dependencies and setup complexities inherent in
previous systems, Fast-UMI offers an accessible and effective
solution for acquiring high-quality manipulation trajectory
data, thereby advancing the development of general-purpose
action policies in robotic manipulation.

While the current prototype constitutes version 1.0 of our
Fast-UMI system, future work will focus on releasing en-
hanced iterations that offer improved performance and user
experience. These advanced versions will integrate additional
sensing modalities, such as tactile and force sensors, to facil-
itate multimodal data acquisition. By incorporating a broader
array of sensors, we aim to augment the system’s capabilities,
enabling more sophisticated user-robot interaction modeling
and supporting more complex robotic manipulation tasks. This
progression will enhance the scalability and adaptability of
Fast-UMI, further solidifying its utility as a comprehensive
tool for robotic learning research.
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